
Logistics, Affordances, and Evaluation of Build Programming SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada

Logistics, Affordances, and Evaluation of Build Programming
A Code Reading Instructional Strategy

Amanpreet Kapoor
 Engineering Education
 University of Florida

 kapooramanpreet@ufl.edu

Tianwei Xie
 Computer & Info.

Science & Engineering
 University of Florida
 xietianwei@ufl.edu

Leon Kwan
Computer & Info.

Science & Engineering
 University of Florida
 kwanleon@ufl.edu

Christina Gardner-McCune
 Computer & Info. Science

& Engineering
 University of Florida
 gmccune@ufl.edu

ABSTRACT
Computing students are expected to contribute to large unfamiliar
codebases as they transition from university to industry settings.
While computing courses provide students ample opportunities to
write code independently or utilize abstract functionalities from
standard libraries, students have fewer opportunities to read or
extend codebases written by other programmers. This paper
presents the logistics, affordances, and empirical evaluation of a
novel instructional strategy, Build Programming, which is designed
to promote code reading and extension in CS courses. In this
strategy, a student (1) solves a programming problem, (2) is assigned
a new codebase from a peer who solved the same problem, and (3) is
asked to extend the assigned codebase to solve another problem.
This allows a student to understand and extend an authentic
codebase that is situated in a familiar context. In this paper, we shed
light on the logistics of operationalizing this strategy in the context
of an undergraduate Data Structures and Algorithms course
(N=206). We also describe the affordances of this strategy through
student experiences and evaluate the efficacy of one of these
affordances, improving code quality through source code analysis.
Most students (91%) proposed continuing Build Programming and
students’ code quality significantly improved after our strategy. Our
findings underscore the benefits of Build Programming, and we
hope that more instructors incorporate it in CS courses.

 CCS CONCEPTS

• Social and professional topics~Computing Education

KEYWORDS
code reading, instructional strategy, code quality, pedagogy

ACM Reference format:
Amanpreet Kapoor, Tianwei Xie, Leon Kwan, and Christina Gardner-
McCune. 2023. Logistics, Affordances, and Evaluation of Build Programming:

A Code Reading Instructional Strategy. In Proceedings of 54th ACM
Technical Symposium on Computer Science Education V. 1 (SIGCSE 2023),
March 15-18, 2023, Toronto, ON, Canada. ACM, New York, NY, USA, 7
pages. https://doi.org/10.1145/3545945.3569756

1 INTRODUCTION
Computing students are expected to contribute to large unfamiliar
codebases as they transition from university to industry settings in
order to extend functionality [34, 40] and complete code reviews to
verify functionality [36]. Research shows that software engineers
spend 60% of their time reading code in the industry [27]. While core
computing courses provide students several opportunities to
produce code or reuse code from standard libraries, students have
fewer opportunities to read or extend codebases written by other
programmers [6]. Our paper presents the logistics, affordances, and
evaluation of a novel instructional strategy, Build Programming,
which is designed to promote code reading and extension in
computing courses. In this strategy, a student (1) solves a
programming problem, (2) is assigned a new codebase from a peer
who solved the same problem, and (3) is asked to extend the
assigned peer’s code to solve another programming problem. This
allows a student to understand and extend an authentic codebase
that is situated in a context that they are familiar with. Thus, we
hypothesize that Build Programming can scaffold code reading
whereby the familiar context of the problem acts as a scaffold and
the student is expected to navigate the structural differences in the
assigned codebase in order to extend the functionality. Our work
presents rich descriptions on how we implemented Build
Programming in the context of a Data Structures and Algorithms
(DSA) course. We also describe student perceptions of affordances of
our strategy and conclude with evaluation of one of these
affordances, improving code quality.

2 PRIOR WORK
Code reading: Code reading is a common software engineering
practice as developers are expected to work in teams extending the
functionality of code written by other programmers [32, 34, 40].
Within Computing Education Research (CER), work on code reading
has focused on designing systems to scaffold code reading [18, 33]
and understanding students’ code reading or code comprehension
behavior through eye tracking [4, 5, 7, 17, 22]. There is also a large
body of work [23, 25, 26] that has examined students’ code tracing
and code comprehension behavior and some studies have used
systems [28, 42] or diagrams [12] for scaffolding code tracing. These

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada
© 2023 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-9431-4/23/03…$15.00
https://doi.org/10.1145/3545945.3569756

https://doi.org/10.1145/3545945.3569756
mailto:Permissions@acm.org
https://doi.org/10.1145/3545945.3569756

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada Amanpreet Kapoor, Tianwei Xie, Leon Kwan, & Christina Gardner-McCune

studies have used short programming problems for tracing rather
than large codebases and have found that students often have
difficulties tracing and reading code written by others.
 Instructional strategies that promote code reading have also been
suggested such as code deconstruction which encompasses the
process of reading, tracing, and debugging code [14], Explain in plain
english activities in computing courses [10], or Reading aloud where
a learner reads out loud their code [43]. Pair programming [8, 24] is
also prominently used but more often for collaboration rather than
code reading. Our strategy contrasts pair programming as our focus
is on individual contributions and code reading. Other instructional
techniques for promoting code reading include DeClue’s work on
pair programming coupled with pair trading [13]. DeClue found that
students recognized the need for documentation and understood the
importance of comments and code design after pair trading
(working on other codebases). Our intervention is similar to
DeClue’s work as students extend codebases written by others.
However, our work did not require students to pair program and we
deployed a mixed methods approach to evaluate the efficacy of our
intervention rather than a purely qualitative approach taken by
DeClue. In addition, while the motivation behind our intervention
was to promote code reading by using context as a scaffold,
DeClue’s work was motivated by the collaborative aspects of pair
programming. Lastly, remix approaches to programming have been
used to introduce students to coding [1, 35, 37]. In this approach,
students inspect and edit the code of existing projects enabling them
to see the underlying structures of code and reverse engineer the
solution. The remix approach reduces student anxiety [37] and are
usually designed for scaffolding learning of CS concepts rather than
code reading.

Code quality: Code quality can be assessed in different dimensions
such as readability, maintainability, reusability, etc. [32]. Within
computing education, researchers have assessed code quality
extensively in the context of pair programming [8, 16, 29, 45],
creative projects [15], and have determined the linkage between
perception of code quality (readability) and code writing [44]. For
example, Omar et. al. [29] developed the Java Quality Measurement
Tool (JaQMeT) to assess code quality in terms of correctness or
complexity in the context of pair programming and Hanks et. al.
[16] assessed the code quality of students who participated in pair
programming. Hanks et. al. [16] found moderate evidence that
students wrote shorter and less complex code if they participated in
pair programming.
 The most common dimension to assess code quality in CER is
readability [2]. Code readability has been defined as the human
judgment of how easy it is to understand a program [3, 30]. Buse
and Weimer [3] investigated the association between the human
notion of readability and source code features related to the
structure, density, logical complexity, and documentation in a given
program. They found that the average number of identifiers and
average line length were the top two predictors of highly readable
code, and both features negatively correlated with readability i.e., the
longer the average line length or greater the average number of

identifiers, the lower the readability. We use these two metrics to
evaluate the impact of Build Programming on students’ code quality.
 Papers investigating code readability in CER have also used
comment ratio as a metric. Comment ratio is the number of
comments per line of code and higher values of the ratio indicate
better readability [3]. For instance, Ciolkowski and Schlemmer [8]
investigated if pair programming can improve readability metrics
and found that students who worked in pairs had a lower comment
ratio when compared with students who collaborated without pair
programming. On the contrary, Hulkko and Abrahamsson [19]
observed that practitioners and students who participated in pair
programming had a higher comment ratio than solo developers,
suggesting that pair programmed code was more readable than solo
code. Given the prominence of comment ratio as a metric for
assessing code quality, we use it as a third metric to gauge the
impact of Build Programming on code quality.

3 LOGISTICS

3.1 Description of Build Programming
Build Programming is an instructional strategy that we have
designed to promote code reading and extension. In this strategy, a
student first independently solves a programming problem, then is
randomly assigned a codebase of another student who solved the
same problem, and finally the student is asked to build upon the
assigned codebase to solve another problem. This allows a student to
understand and extend a codebase that is situated in a context that
they are familiar with. Instructors can leverage Build Programming
in a variety of courses as all that is needed to incorporate this
strategy is a decomposable problem. Varying complexity can be
added to a course assignment and our strategy can be used for
eclectic types of assessments such as short coding problems, lab
assignments, or projects.

3.2 Operationalizing Build Programming
We operationalized Build Programming in the context of a large
undergraduate DSA course at a public university in the US in Fall
2021. Students were expected to complete three projects as a part of
our course: two independent projects (each carrying 10% weight of
the grade) and a third group project. We utilized Build Programming
in the first two independent projects. In the second project, each
student was assigned a random peer’s codebase of the first project
and was instructed to read and extend the assigned codebase (see
Figure 1).

Project 1 (Pre-measure of code quality): As a part of the first
project, students individually implemented a non-templated self-
balancing binary tree data structure called AVL tree in C++. No
starter files were provided to the students and the students were
expected to design their own interface. The goal of the project was
to model a student database as an AVL tree where the student ID
was the primary key that was used to organize the elements in the
binary search tree-based data structure. Students

Logistics, Affordances, and Evaluation of Build Programming SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada

Figure 1: Logistics of Build Programming

were expected to parse input commands and call respective methods
for nine operations (e.g., insert, remove, search, etc.). They were
given five input and output-based public test cases to test their
program and were also encouraged to build unit tests using the C++
catch framework. They were graded for correctness based on 15 test
cases (5 public and 10 additional hidden tests) each carrying 5 points
(75 points in total), a documentation report consisting of an analysis
of the runtime of their program (15 points), and their coding style
and design (10 points). For the code style and design, we graded
them based on comments, whitespaces, naming convention, proper
modularity, clean API, and appropriate memory management.
Additionally, they could score five bonus points for unit testing their
code and submitting the catch tests. However, their total score was
capped at 100 points. While 387 students completed our course, 206
students consented to research and submitted both projects which
form our corpus for analysis (see Section 4.2). These 206 students, on
average, wrote 586 lines of code (Min = 207, Max = 2182, SD = 194)
in Project 1 and the Project 1 grade average was 81.4 out of 100 (Min
= 16.2, Max = 100, SD = 14.4).

Project 2 (Intervention and post-measure of code quality): The
goal of Project 2 was to compare an ordered map and an unordered
map by implementing and extending the functionality of an
assigned codebase. This project was segmented into five parts: (A)
Implementing the tree-based or ordered map [20 points], (B)
Implementing the hash-table based or unordered map [40 points],
(C) Comparing the performance of ordered and unordered map [20
points], (D) Reviewing the code quality of the assigned codebase [10
points], and (E) Getting an approval from the author of the assigned
codebase [10 points].
 For this project, students were randomly assigned AVL Tree
codebases (Project 1) of another student. They were asked to extend
the assigned codebase to implement another data structure called an
ordered map (Project 2a), an abstraction over a self-balancing binary
tree. Students were expected to read and comprehend the peer code
and create an abstraction over the peer’s AVL Tree. They were
encouraged to reach out to the author in case they had a question
but were required to reuse the peer’s code. To ensure a student built
on top of the assigned codebase, 10 points were allocated for the
author’s approval (Part D). The assignee who extended the codebase
was asked to reach out to the author, who independently filled out a
Google form to verify reuse. The students were not informed

beforehand (during Project 1) that they will be randomly assigned
Project 1 peer codebases for Project 2. This was deliberate as we
wanted students to write code more naturally in Project 1.
 During the assignment of random codebases of Project 1, some
students did not pass all tests in our test suite. To ensure students
could work on codebases that were functional, we assigned
codebases that passed at least 80% tests. In professional settings,
developers may be asked to work on messy and unfamiliar
codebases and we deliberately wanted to introduce this randomness
which improves external validity [11]. 80% of the 206 students were
assigned random codebases (n=164) while 42 students were assigned
a codebase that was volunteered by a student for use in place of
projects that didn’t meet the 80% pass rate. We did not provide an
editorial solution codebase to ensure students have an authentic
experience of navigating a codebase written by a student rather than
the course staff. For the 42 students who were assigned the
voluntary codebase, the course staff acted as an author for code
extension approval.
 In the second half of this project (Project 2b), students
individually implemented an Unordered Map and compared this
implementation with their extended implementation of an Ordered
Map (Project 2a). This codebase (2b) can give us insight into
students’ code quality after they had worked on the assigned
codebase. On average, 206 students wrote 452 lines of code (Min =
114, Max = 1502, SD = 179) in Project 2b and the Project 2 grade
average was 91.9 (Min = 0, Max = 100, SD = 15.0).
 We used the Instructure’s Canvas Learning Management System
[20] to organize the projects and the random assignment peer
review feature to assign codebases. The codebases that did not pass
the threshold tests were manually reassigned. In addition, we used
Google forms to gather feedback on Part D - Reviewing the code
quality of your peer and Part E - Getting approval from your peer on
the usage of their codebase [21].

4 METHODS FOR EVALUATION

4.1 Study Design
The purpose of our study was to gather preliminary feedback from
the students on Build Programming and develop potential
hypotheses from a qualitative analysis that can be subsequently
assessed using experiments or quasi-experiments. To achieve this
purpose, we designed a mixed methods study that followed a pre-

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada Amanpreet Kapoor, Tianwei Xie, Leon Kwan, & Christina Gardner-McCune

post design [39] in the context of a large undergraduate DSA course
in Fall 2021. A pre-post design is a form of pre-experimental design
and does not have a control group. This design can aid researchers
in discerning whether a phenomenon is worthy of potential
investigation with fewer overheads before running a formal
experiment [31]. We aim to answer the following research questions
through our study:

RQ.1. What are the student perceptions of the affordances of Build
Programming instructional strategy? How did they receive the
activity?

RQ.2. How effective is the Build Programming instructional strategy
in improving a student’s code quality as measured through
readability metrics such as comment ratio, average line lengths, and
average identifiers per line?

 To understand student perceptions of the affordances of Build
Programming (RQ.1), we used qualitative responses from student
reflections in a post-survey. Based on this analysis, we came up with
RQ.2 as students stated that our activity helped them in recognizing
the importance of code quality. To evaluate if our strategy
influenced students’ code quality and answer RQ.2, we took a
quantitative approach and analyzed students’ source code before
and after exposure to Build Programming (see Figure 1).

4.2 Participants and Study Context
Our study population is undergraduate students enrolled in a
computing program. Our sample is drawn from students enrolled in
an undergraduate DSA class at a public university in the US. The
DSA course is a required course for CS and Computer Engineering
majors and follows the CS1, CS2, and Discrete Mathematics courses
in our program. The language of instruction is C++. 387 students
completed the course in Fall 2021 of which 224 students consented
to share their data for research in an IRB-approved survey (Response
rate: 58%). There was no incentive offered to gain students’ consent
and students voluntarily completed this survey. 206 of the 224
students completed both projects and hence we discarded 18
students with missing data. Therefore, our final corpus consists of
codebases and survey data from 206 students.

4.3 Data collection and analysis
To understand student perceptions of the affordances and reception
of Build Programming (RQ.1), we use student responses from two
open-ended questions that were a part of a post-survey: (1) What did
you learn from this activity?, and (2) Should this project be continued
in the future? Any other comments? These responses were analyzed
using inductive content analysis and open coding following a
constant comparison technique[41].
 To evaluate if the strategy influenced the student’s code quality
and answer RQ.2, we followed a quantitative approach to analyzing
source code before (Project 1) and after (Project 2b) the Build
Programming intervention (Project 2a). Our independent variable is
a repeated measures variable which is time (i.e., before and after the
build programming intervention). Our dependent variable includes
three code readability metrics: comment ratio (of block as well as
single line comments), average line length, and average number of
identifiers per line. These metrics were selected based on: (1) their

high correlation to the human notion of readability as described in
prior work from Buse and Weimer [3] and (2) their usage in prior
CER literature (see Section 2).

Figure 2: Examples of code quality metrics

 In these readability metrics, the comment ratio of block comments
denotes the number of comments spread over multiple lines divided
by the total lines of code whereas the comment ratio of single-lined
comments denotes the number of comments spanned over one line
divided by the total lines of code. Average line length is defined as the
average number of characters in a line (see Figure 2). Finally,
identifiers are any names used to describe a variable, function, class,
module, or user-defined entities. Based on Buse and Weimer [3], the
metrics that are positively correlated with readability include the
average number of block comments and average lines of single-lined
comments. The average line length and the average number of
identifiers per line are negatively correlated with readability. This
implies that shorter source code line lengths may suggest a more
readable program or having more comments may improve
readability. Similarly, long chains of objects and sub-properties
should be avoided as they negatively impact code readability [38].
 To compute each readability metric, a parser script was written
in Python 3.8, which imported clang.cindex [9], a python binding of
clang library that parsed C++ source code into tokens. Using this
script [21], tokens labeled as identifiers and comments were
extracted and counted for each of the source files and a csv file was
generated that consisted of anonymous student ids along with
readability metrics for both projects.
 To compare differences in code quality across our population, we
used a paired samples t-test for normally distributed data and a non-
parametric equivalent when the assumptions of normality were not
met. A Shapiro-Wilk test was used to check for normality, and we
found that only the average number of identifiers per line data was
normally distributed. Thus, we used a paired sample t-test to test the
following null hypothesis: There is no difference between the mean
paired average number of identifiers per line before and after the build
programming intervention in the source code of our population of
undergraduate computing students. A p-value of less than 0.05 was
used to reject our null hypotheses. For the other dependent
variables: comment ratio and average line length the assumptions of
normality were not met. Therefore, we used a Wilcoxon signed rank
test which is used to test the following null hypothesis: There is no
difference in the median paired code quality metrics (e.g., comment
ratio) before and after the build programming intervention in the
source code of our population of undergraduate computing students.
The alternative hypothesis assumes that the difference in the median
is greater than 0 for paired code quality metrics. The tests were
conducted using scipy.stats library in python.

Logistics, Affordances, and Evaluation of Build Programming SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada

5 FINDINGS

5.1 Affordances of Build Programming
We asked students in the post-survey what they learned from our
project which used Build programming. We inductively coded these
104 open-ended responses using five unique codes.

Promoting and scaffolding code reading: Unsurprisingly, most
students (40%, n=42) described that Build programming promoted
and scaffolded code reading and extension which was our original
intention behind the intervention. For instance, S7 described that
they “learned how to navigate another person's code and what aspects
of the code to look at first in order to understand the structure of the
code”. Students also described that our technique scaffolded code
reading because of familiar context. For example, S214 stated that
“the part on working with someone else's code is simple enough that the
focus is entirely on understanding the code without the stress of
figuring out the implementation, which I think is a really good way to
introduce it”.

Learning computing concepts: 32% of 104 students (n=33) stated
that reading the codebase provided them an opportunity to learn
various computing concepts such as wrapper classes, pass by
reference, helper functions, traversals, command arguments,
pointers, memory management, and organization of files. For
instance, S88 stated, “I learned that you could do post/pre/in order
traversals with stacks. This is much more efficient than the way I
employed”. Along similar lines, S107 stated that, “the peer code
provided to me [for the assignment] taught me a lot of new concepts
that I had not touched on, such as shared pointers”.

Importance of code quality: 25% of the 104 students (n=26)
suggested that Build Programming supported them in recognizing
the importance of code quality metrics such as appropriate
whitespace and comments, and consistent code style. S123 reported
that “I learned that I should make my code more readable in case
others need to review my work or continue from where I started. I take
a lot of shortcuts to cut out code and it might be confusing with how
little I comment”. Another student, S125 described that “I learned that
documenting your code is extremely useful to better understand it and
work with it faster. In addition, I learned that documenting your code is
really important so that others can understand it to be able to work
with it”. Not only did the students realize the importance of writing
readable code, but they also suggested that they will alter their
behavior by writing more readable code. For example, S125
continued that in the future, “I will document and add more
comments everywhere as if I am explaining it to another person. I will
add lines of comments in between my functions for better readability”.
To investigate this behavioral change, we undertook a source code
analysis to determine changes in code quality (Section 5.3).

Alternate ways to solve a problem: A few students (9%, n=9)
described that the project involving Build Programming exposed
them to alternative ways of solving a problem, new ideas, and made
them reflect on what they could have done differently. For instance,
S216 stated, “It was a good learning experience since I learned about a
different approach/style of coding than mine”. Another student, S104,
mentioned, “I got to see another way of going about the code that I had

already done. It was kind of interesting comparing her code to mine,
and seeing how I had it more optimized in places and vise versa”.

Authentic assessment: Finally, five students (5%) described our
assessment as authentic and comparable to what they might
encounter in the industry. For example, S153 stated, “I learned what
it will be like in the real industry. I am only used to working on my
own coding projects in which I know and am familiar with. A lot of
my time in the future will be spent reading code to understand its
functionality rather than just writing it”.

5.2 Student reception
We asked students in our survey if we should continue the project
with Build Programming in the future. 119 student responses to this
question were coded into three categories based on valence
(affective tone): Positive, Positive with changes, and Negative. In total,
91% of the 119 student responses suggested that we should continue
the activity as-is or with the logistical change of assigning working
codebases (RQ1).
 72.3% of the 119 student responses (n=86) were coded as positive
and students enthusiastically responded that the project should
continue as-is or with minor modifications. For instance, S1 stated, “I
think so. A lot of my friends from industry in CS (FAANG., AMEX,
BOA) have told me its good practice to learn how to use different
codebases to adapt to your own solution. A lot of code is already
written, sometimes its up to you to understand it, identify problems,
and fix it”. 18.5% of responses (n=22) were coded as positive with
changes and these students suggested that the project should be
continued only after making a change. This change pertained to the
assignment of codebases that were either written by the course staff
or a working codebase from another student. For instance, S49
stated, “I believe the project should absolutely be continued in the
future. Writing data structures from a small bit of skeleton code is very
good practice. […] A critical point though, I do not believe it is a good
idea to randomly assign codebases to people. It is a waste of time to be
assigned codebases that do not function correctly […]. The instruction
team may wish to take a few known-to-be-functional codebases […]
and only pull from that pool in the future”. Finally, 9.2% of responses
were categorized into negative valence (n=11) as students suggested
that the project should be discontinued due to an unfavorable
experience. An example response in this category was S38’s
response who suggested “I do not believe this project should be
continued in the future. It is too dependent on the competence of
others”. These 9.2% of students share the same general sentiment as
the 18.5% who were also frustrated with working with someone
else’s code that did not work. This suggests that if codebases are
curated for 100% test passing or additional time is given to students
to fix their failing tests, this assignment is one that is viable for all
students.

5.3 Code Quality Analysis
We conducted a source code analysis to determine the efficacy of
Build Programming on improving students’ code quality. Comment
ratio for single line comments decreased significantly before
(Median=0.09, Mean(µ)=0.105, SD(σ)=0.06) and after (Median=0.07,
µ=0.08, σ=0.06) Build Programming (Z=4.99, N=206, p<0.001).

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada Amanpreet Kapoor, Tianwei Xie, Leon Kwan, & Christina Gardner-McCune

Although we expected that our strategy would increase the comment
ratio as more students might be influenced to write comments, our
results were in the opposite direction as students wrote fewer
comments (24%↓) after our intervention. This difference could be
attributed to the grading rubric of Project 1 which allocated one
point for writing comments while the project after Build
Programming had no explicit points for writing comments. Since we
designed our intervention for promoting code reading and not for
gauging code quality initially, the two projects did not have similar
rubrics and grades might have motivated students to write more
comments.

Figure 3: Box plots of code quality metrics

 In addition, comment ratio for block line comments was
significantly different (Z=8.08, N=206, p<0.001) before (Median =0,
µ=0.002, σ=0.006) and after Build Programming (Median= 0.003,
µ=0.003, σ=0.003). For block comments, however, the results were in
the expected direction as students wrote more block comments on
average after the intervention. But students wrote fewer block
comments than single-line comments (23x of the total block
comments on average). The other metrics of code quality: average
line length and the average number of identifiers per line were not
explicitly stated in the rubrics of our projects and hence might be
more accurate metrics for gauging code quality differences. Students
wrote shorter lines of code (7%↓) after Build Programming. The
difference between average line length before (Median=20.7, µ=21.2,
σ=4.3) and after (Median=19.4, µ=19.7, σ=2.9) our activity was
significant (Z=5.16, N=206, p<0.001). Finally, for the last metric, the
average number of identifiers per line, the data followed the normal
distribution, and we used a paired two-tailed t-test to test our
hypothesis. Students wrote less number of identifiers per line on
average (12.5%↓), which indicates better code quality after our
intervention, and the results indicate a significant difference
between the average number of identifiers per line before (µ=1.6,
σ=0.3) and after (µ=1.4, σ=0.2) our activity (t(205)=11.2, p<0.001).

6 DISCUSSION AND CONCLUSION
We initially designed the Build Programming intervention to scaffold
students’ code reading by providing them with an opportunity to
work with unfamiliar codebases albeit in a familiar context. Through
our qualitative analysis, we found that our intervention not only
promoted code reading, but also increased students’ exposure to
alternate ways to implement solutions to DSA problems, enhanced
their knowledge of computing constructs, and increased their
awareness of the importance of code quality through an authentic
experiential (“show”) learning approach rather than a “tell”
approach. A significant majority of students (91%) expressed that we
should continue Build Programming as-is or with minor
modifications. Students recommended that they should be provided
with fully functional codebases as they were frustrated to work with
codebases that had bugs. Since we assigned codebases that passed
80% or more tests, 91% of the 206 students (n=188) were assigned
codebases that were not completely correct which led to an
unpleasant experience for some students. Instructors can resolve this
problem in the future by handpicking selected working codebases
for random assignment and then approving the codebase reuse on
their end. In our future work, we plan to incorporate Build
Programming in more courses as well as other projects as well as
run carefully designed experiments to test the efficacy of Build
Programming on scaffolding code reading and improving code
quality. We recommend other instructors to incorporate Build
Programming in their courses given the importance of learning how
to read and extend codebases.

7 LIMITATIONS
Our analysis assumes that students’ code style would remain the
same across projects and we are comparing the code quality before
and after the intervention. Hence, our study might be subject to
maturation and testing effects as the students might improve their
quality of code over the semester while being tested on two different
projects. To prevent these effects, counterbalancing cannot be used
due to the nature of the intervention, but a better experimental
design would include a control group that coded the Ordered map
and Unordered map without Build Programming, followed by a
comparison of code quality metrics. Another limitation that impacts
our analysis is the lack of consistent rubrics across two projects. A
more careful experiment would use a similar rubric. Lastly, data
coded using qualitative analysis is subject to interpretation biases
[11]. We supplement our codes with representative quotes to
increase validity and we are transparent about our coding process.

REFERENCES
[1] Amanullah, K. and Bell, T. 2019. Evaluating the Use of Remixing in Scratch Projects

Based on Repertoire, Lines of Code (LOC), and Elementary Patterns. 2019 IEEE
Frontiers in Education Conference (FIE) (2019), 1–8.

[2] Börstler, J., Störrle, H., Toll, D., van Assema, J., Duran, R., Hooshangi, S., Jeuring, J.,
Keuning, H., Kleiner, C. and MacKellar, B. 2018. “I Know It When I See It”
Perceptions of Code Quality: ITiCSE ’17 Working Group Report. Proceedings of the
2017 ITiCSE Conference on Working Group Reports (New York, NY, USA, 2018), 70–
85.

[3] Buse, R.P.L. and Weimer, W.R. 2010. Learning a Metric for Code Readability. IEEE
Transactions on Software Engineering. 36, 4 (2010), 546–558.
DOI:https://doi.org/10.1109/TSE.2009.70.

[4] Busjahn, T., Bednarik, R., Begel, A., Crosby, M., Paterson, J.H., Schulte, C., Sharif, B.
and Tamm, S. 2015. Eye Movements in Code Reading: Relaxing the Linear Order.

Logistics, Affordances, and Evaluation of Build Programming SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada

2015 IEEE 23rd International Conference on Program Comprehension (2015), 255–265.
[5] Busjahn, T., Bednarik, R. and Schulte, C. 2014. What Influences Dwell Time during

Source Code Reading? Analysis of Element Type and Frequency as Factors.
Proceedings of the Symposium on Eye Tracking Research and Applications (New
York, NY, USA, 2014), 335–338.

[6] Busjahn, T. and Schulte, C. 2013. The Use of Code Reading in Teaching
Programming. Proceedings of the 13th Koli Calling International Conference on
Computing Education Research (New York, NY, USA, 2013), 3–11.

[7] Busjahn, T., Schulte, C. and Busjahn, A. 2011. Analysis of Code Reading to Gain
More Insight in Program Comprehension. Proceedings of the 11th Koli Calling
International Conference on Computing Education Research (New York, NY, USA,
2011), 1–9.

[8] Ciolkowski, M. and Schlemmer, M. 2002. Experiences with a case study on pair
programming. Workshop on Empirical Studies in Software Engineering (2002).

[9] clang/bindings/python at master · llvm-mirror/clang: https://github.com/llvm-
mirror/clang/tree/master/bindings/python. Accessed: 2022-08-18.

[10] Corney, M., Fitzgerald, S., Hanks, B., Lister, R., McCauley, R. and Murphy, L. 2014.
“explain in Plain English” Questions Revisited: Data Structures Problems.
Proceedings of the 45th ACM Technical Symposium on Computer Science Education
(New York, NY, USA, 2014), 591–596.

[11] Creswell, J.W. and Creswell, J.D. Research design : qualitative, quantitative, and
mixed methods approaches.

[12] Cunningham, K., Blanchard, S., Ericson, B. and Guzdial, M. 2017. Using Tracing
and Sketching to Solve Programming Problems: Replicating and Extending an
Analysis of What Students Draw. Proceedings of the 2017 ACM Conference on
International Computing Education Research (New York, NY, USA, 2017), 164–172.

[13] DeClue, T. 2003. Pair programming and pair trading: effects on learning and
motivation in a CS2 course. Journal of Computing Sciences in Colleges. 18, (2003),
49–56.

[14] Griffin, J.M. 2016. Learning by Taking Apart: Deconstructing Code by Reading,
Tracing, and Debugging. Proceedings of the 17th Annual Conference on Information
Technology Education (New York, NY, USA, 2016), 148–153.

[15] Groeneveld, W., Martin, D., Poncelet, T. and Aerts, K. 2022. Are Undergraduate
Creative Coders Clean Coders? A Correlation Study. Proceedings of the 53rd ACM
Technical Symposium on Computer Science Education V. 1 (New York, NY, USA,
2022), 314–320.

[16] Hanks, B., McDowell, C., Draper, D. and Krnjajic, M. 2004. Program Quality with
Pair Programming in CS1. Proceedings of the 9th Annual SIGCSE Conference on
Innovation and Technology in Computer Science Education (New York, NY, USA,
2004), 176–180.

[17] Herman, G.L., Meyers, S. and Deshaies, S.-E. 2021. A Comparison of Novice
Coders’ Approaches to Reading Code: An Eye-tracking Study. ASEE Conferences.

[18] Hoffman, D.M., Lu, M. and Pelton, T. 2011. A Web-Based Generation and Delivery
System for Active Code Reading. Proceedings of the 42nd ACM Technical
Symposium on Computer Science Education (New York, NY, USA, 2011), 483–488.

[19] Hulkko, H. and Abrahamsson, P. 2005. A Multiple Case Study on the Impact of Pair
Programming on Product Quality. Proceedings of the 27th International Conference
on Software Engineering (New York, NY, USA, 2005), 495–504.

[20] Instructure | Educational Software Development: https://www.instructure.com/.
Accessed: 2022-08-18.

[21] Kapoor, A., Xie, T., Kwan, L. and Gardner-McCune, C. 2022. Logistics, Affordances,
and Evaluation of Build Programming: A Code Reading Instructional Strategy.
https://github.com/kapooramanpreet/Build-Programming

[22] Kather, P., Duran, R. and Vahrenhold, J. 2021. Through (Tracking) Their Eyes:
Abstraction and Complexity in Program Comprehension. ACM Trans. Comput.
Educ. 22, 2 (Nov. 2021). DOI:https://doi.org/10.1145/3480171.

[23] Kumar, A.N. 2013. A Study of the Influence of Code-Tracing Problems on Code-
Writing Skills. Proceedings of the 18th ACM Conference on Innovation and
Technology in Computer Science Education (New York, NY, USA, 2013), 183–188.

[24] Kuppuswami, S. and Vivekanandan, K. 2004. The Effects of Pair Programming on
Learning Efficiency in Short Programming Assignments. Informatics in Education.

3, 2 (2004), 251–266. DOI:https://doi.org/10.15388/infedu.2004.18.
[25] Lister, R., Adams, E.S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney,

R., Moström, J.E., Sanders, K., Seppälä, O., Simon, B. and Thomas, L. 2004. A Multi-
National Study of Reading and Tracing Skills in Novice Programmers. Working
Group Reports from ITiCSE on Innovation and Technology in Computer Science
Education (New York, NY, USA, 2004), 119–150.

[26] Lopez, M., Whalley, J., Robbins, P. and Lister, R. 2008. Relationships between
Reading, Tracing and Writing Skills in Introductory Programming. Proceedings of
the Fourth International Workshop on Computing Education Research (New York,
NY, USA, 2008), 101–112.

[27] Mistrik, I., Galster, M., Maxim, B.R. and Tekinerdogan, B. 2021. Knowledge
Management in the Development of Data-Intensive Systems. CRC Press.

[28] Nelson, G.L., Xie, B. and Ko, A.J. 2017. Comprehension First: Evaluating a Novel
Pedagogy and Tutoring System for Program Tracing in CS1. Proceedings of the 2017
ACM Conference on International Computing Education Research (New York, NY,
USA, 2017), 2–11.

[29] Omar, M., Romli, R. and Hussain, A. 2008. Automated tool to assess pair
programming program quality. (2008).

[30] Posnett, D., Hindle, A. and Devanbu, P. 2011. A Simpler Model of Software
Readability. Proceedings of the 8th Working Conference on Mining Software
Repositories (New York, NY, USA, 2011), 73–82.

[31] Pre-Experimental Designs | Research Connections:
https://www.researchconnections.org/research-tools/study-design-and-analysis/pre-
experimental-designs. Accessed: 2022-08-18.

[32] Pressman, R.S. 2005. Software Engineering: A Practitioner’s Approach. Boston.
[33] Raymond, D.R. 1991. Reading Source Code. Proceedings of the 1991 Conference of the

Centre for Advanced Studies on Collaborative Research (1991), 3–16.
[34] Reading Code Is an Important Skill. Here’s Why.: 2021. https://builtin.com/software-

engineering-perspectives/reading-code. Accessed: 2022-08-17.
[35] Richardson, I., Cypher, M., Hinton, S., Hutchinson, A., McMullan, J. and Whitkin, J.

2011. Remix, mash-up, share: Authentic assessment, copyright and assessment
policy in interactive media, games and digital design. (2011).

[36] Sadowski, C., Söderberg, E., Church, L., Sipko, M. and Bacchelli, A. 2018. Modern
Code Review: A Case Study at Google. Proceedings of the 40th International
Conference on Software Engineering: Software Engineering in Practice (New York,
NY, USA, 2018), 181–190.

[37] Sanchez, J. 2017. Overcoming the Fear of Coding: A Qualitative Analysis of the
Remix Approach. EdMedia+ Innovate Learning (2017), 1006–1010.

[38] dos Santos, R.M. and Gerosa, M.A. 2018. Impacts of Coding Practices on
Readability. Proceedings of the 26th Conference on Program Comprehension (New
York, NY, USA, 2018), 277–285.

[39] Shek, D.T. and Zhu, X. 2018. The SAGE Encyclopedia of Educational Research,
Measurement, and Evaluation. SAGE Publications, Inc.

[40] Six Reasons Why Reading Code Is More Important Than Writing: 2021.
https://betterprogramming.pub/6-reasons-why-reading-code-is-more-important-than-
writing-21e7b0b62203. Accessed: 2022-08-17.

[41] Strauss, A. and Corbin, J. 2008. Basics of qualitative research: Grounded theory
procedures and techniques. SAGE Publications, Inc.

[42] Striewe, M. and Goedicke, M. 2014. Code Reading Exercises Using Run Time
Traces. Proceedings of the 2014 Conference on Innovation & Technology in Computer
Science Education (New York, NY, USA, 2014), 346.

[43] Swidan, A. and Hermans, F. 2019. The Effect of Reading Code Aloud on
Comprehension: An Empirical Study with School Students. Proceedings of the ACM
Conference on Global Computing Education (New York, NY, USA, 2019), 178–184.

[44] Wiese, E.S., Rafferty, A.N. and Fox, A. 2019. Linking Code Readability, Structure,
and Comprehension Among Novices: It’s Complicated. 2019 IEEE/ACM 41st
International Conference on Software Engineering: Software Engineering Education
and Training (ICSE-SEET) (2019), 84–94.

[45] Xu, S. and Rajlich, V. 2005. Pair Programming in Graduate Software Engineering
Course Projects. Proceedings Frontiers in Education 35th Annual Conference (2005).

