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ABSTRACT 
Computing students are expected to contribute to large unfamiliar 
codebases as they transition from university to industry settings. 
While computing courses provide students ample opportunities to 
write code independently or utilize abstract functionalities from 
standard libraries, students have fewer opportunities to read or 
extend codebases written by other programmers. This paper 
presents the logistics, affordances, and empirical evaluation of a 
novel instructional strategy, Build Programming, which is designed 
to promote code reading and extension in CS courses. In this 
strategy, a student (1) solves a programming problem, (2) is assigned 
a new codebase from a peer who solved the same problem, and (3) is 
asked to extend the assigned codebase to solve another problem. 
This allows a student to understand and extend an authentic 
codebase that is situated in a familiar context. In this paper, we shed 
light on the logistics of operationalizing this strategy in the context 
of an undergraduate Data Structures and Algorithms course 
(N=206). We also describe the affordances of this strategy through 
student experiences and evaluate the efficacy of one of these 
affordances, improving code quality through source code analysis. 
Most students (91%) proposed continuing Build Programming and 
students’ code quality significantly improved after our strategy. Our 
findings underscore the benefits of Build Programming, and we 
hope that more instructors incorporate it in CS courses. 
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1  INTRODUCTION 
Computing students are expected to contribute to large unfamiliar 
codebases as they transition from university to industry settings in 
order to extend functionality [34, 40] and complete code reviews to 
verify functionality [36]. Research shows that software engineers 
spend 60% of their time reading code in the industry [27]. While core 
computing courses provide students several opportunities to 
produce code or reuse code from standard libraries, students have 
fewer opportunities to read or extend codebases written by other 
programmers [6]. Our paper presents the logistics, affordances, and 
evaluation of a novel instructional strategy, Build Programming, 
which is designed to promote code reading and extension in 
computing courses. In this strategy, a student (1) solves a 
programming problem, (2) is assigned a new codebase from a peer 
who solved the same problem, and (3) is asked to extend the 
assigned peer’s code to solve another programming problem. This 
allows a student to understand and extend an authentic codebase 
that is situated in a context that they are familiar with. Thus, we 
hypothesize that Build Programming can scaffold code reading 
whereby the familiar context of the problem acts as a scaffold and 
the student is expected to navigate the structural differences in the 
assigned codebase in order to extend the functionality. Our work 
presents rich descriptions on how we implemented Build 
Programming in the context of a Data Structures and Algorithms 
(DSA) course. We also describe student perceptions of affordances of 
our strategy and conclude with evaluation of one of these 
affordances, improving code quality.  
 

2  PRIOR WORK 
Code reading: Code reading is a common software engineering 
practice as developers are expected to work in teams extending the 
functionality of code written by other programmers [32, 34, 40]. 
Within Computing Education Research (CER), work on code reading 
has focused on designing systems to scaffold code reading [18, 33] 
and understanding students’ code reading or code comprehension 
behavior through eye tracking [4, 5, 7, 17, 22]. There is also a large 
body of work [23, 25, 26] that has examined students’ code tracing 
and code comprehension behavior and some studies have used 
systems [28, 42] or diagrams [12] for scaffolding code tracing. These 
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studies have used short programming problems for tracing rather 
than large codebases and have found that students often have 
difficulties tracing and reading code written by others. 
     Instructional strategies that promote code reading have also been 
suggested such as code deconstruction which encompasses the 
process of reading, tracing, and debugging code [14], Explain in plain 
english activities in computing courses [10], or Reading aloud where 
a learner reads out loud their code [43]. Pair programming [8, 24] is 
also prominently used but more often for collaboration rather than 
code reading. Our strategy contrasts pair programming as our focus 
is on individual contributions and code reading. Other instructional 
techniques for promoting code reading include DeClue’s work on 
pair programming coupled with pair trading [13]. DeClue found that 
students recognized the need for documentation and understood the 
importance of comments and code design after pair trading 
(working on other codebases). Our intervention is similar to 
DeClue’s work as students extend codebases written by others. 
However, our work did not require students to pair program and we 
deployed a mixed methods approach to evaluate the efficacy of our 
intervention rather than a purely qualitative approach taken by 
DeClue. In addition, while the motivation behind our intervention 
was to promote code reading by using context as a scaffold, 
DeClue’s work was motivated by the collaborative aspects of pair 
programming. Lastly, remix approaches to programming have been 
used to introduce students to coding [1, 35, 37]. In this approach, 
students inspect and edit the code of existing projects enabling them 
to see the underlying structures of code and reverse engineer the 
solution. The remix approach reduces student anxiety [37] and are 
usually designed for scaffolding learning of CS concepts rather than 
code reading.   
 

Code quality: Code quality can be assessed in different dimensions 
such as readability, maintainability, reusability, etc. [32]. Within 
computing education, researchers have assessed code quality 
extensively in the context of pair programming [8, 16, 29, 45],  
creative projects [15], and have determined the linkage between 
perception of code quality (readability) and code writing [44]. For 
example, Omar et. al. [29] developed the Java Quality Measurement 
Tool (JaQMeT) to assess code quality in terms of correctness or 
complexity in the context of pair programming and Hanks et. al. 
[16] assessed the code quality of students who participated in pair 
programming. Hanks et. al. [16] found moderate evidence that 
students wrote shorter and less complex code if they participated in 
pair programming.  
     The most common dimension to assess code quality in CER is 
readability [2]. Code readability has been defined as the human 
judgment of how easy it is to understand a program [3, 30]. Buse 
and Weimer [3] investigated the association between the human 
notion of readability and source code features related to the 
structure, density, logical complexity, and documentation in a given 
program. They found that the average number of identifiers and 
average line length were the top two predictors of highly readable 
code, and both features negatively correlated with readability i.e., the 
longer the average line length or greater the average number of 

identifiers, the lower the readability. We use these two metrics to 
evaluate the impact of Build Programming on students’ code quality.  
     Papers investigating code readability in CER have also used 
comment ratio as a metric. Comment ratio is the number of 
comments per line of code and higher values of the ratio indicate 
better readability [3]. For instance, Ciolkowski and Schlemmer [8] 
investigated if pair programming can improve readability metrics 
and found that students who worked in pairs had a lower comment 
ratio when compared with students who collaborated without pair 
programming. On the contrary, Hulkko and Abrahamsson [19] 
observed that practitioners and students who participated in pair 
programming had a higher comment ratio than solo developers, 
suggesting that pair programmed code was more readable than solo 
code. Given the prominence of comment ratio as a metric for 
assessing code quality, we use it as a third metric to gauge the 
impact of Build Programming on code quality.       
 

3  LOGISTICS 

3.1  Description of Build Programming 
Build Programming is an instructional strategy that we have 
designed to promote code reading and extension. In this strategy, a 
student first independently solves a programming problem, then is 
randomly assigned a codebase of another student who solved the 
same problem, and finally the student is asked to build upon the 
assigned codebase to solve another problem. This allows a student to 
understand and extend a codebase that is situated in a context that 
they are familiar with. Instructors can leverage Build Programming 
in a variety of courses as all that is needed to incorporate this 
strategy is a decomposable problem. Varying complexity can be 
added to a course assignment and our strategy can be used for 
eclectic types of assessments such as short coding problems, lab 
assignments, or projects.  

3.2  Operationalizing Build Programming 
We operationalized Build Programming in the context of a large 
undergraduate DSA course at a public university in the US in Fall 
2021. Students were expected to complete three projects as a part of 
our course: two independent projects (each carrying 10% weight of 
the grade) and a third group project. We utilized Build Programming 
in the first two independent projects. In the second project, each 
student was assigned a random peer’s codebase of the first project 
and was instructed to read and extend the assigned codebase (see 
Figure 1).  
 

Project 1 (Pre-measure of code quality): As a part of the first 
project, students individually implemented a non-templated self-
balancing binary tree data structure called AVL tree in C++. No 
starter files were provided to the students and the students were 
expected to design their own interface. The goal of the project was 
to model a student database as an AVL tree where the student ID 
was the primary key that was used to organize the elements in the 
binary search tree-based data structure. Students 



Logistics, Affordances, and Evaluation of Build Programming SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada 
 

 

 
Figure 1: Logistics of Build Programming  

 

were expected to parse input commands and call respective methods 
for nine operations (e.g., insert, remove, search, etc.). They were 
given five input and output-based public test cases to test their 
program and were also encouraged to build unit tests using the C++ 
catch framework. They were graded for correctness based on 15 test 
cases (5 public and 10 additional hidden tests) each carrying 5 points 
(75 points in total), a documentation report consisting of an analysis 
of the runtime of their program (15 points), and their coding style 
and design (10 points). For the code style and design, we graded 
them based on comments, whitespaces, naming convention, proper 
modularity, clean API, and appropriate memory management. 
Additionally, they could score five bonus points for unit testing their 
code and submitting the catch tests. However, their total score was 
capped at 100 points. While 387 students completed our course, 206 
students consented to research and submitted both projects which 
form our corpus for analysis (see Section 4.2). These 206 students, on 
average, wrote 586 lines of code (Min = 207, Max = 2182, SD = 194) 
in Project 1 and the Project 1 grade average was 81.4 out of 100 (Min 
= 16.2, Max = 100, SD = 14.4).  
  

Project 2 (Intervention and post-measure of code quality): The 
goal of Project 2 was to compare an ordered map and an unordered 
map by implementing and extending the functionality of an 
assigned codebase. This project was segmented into five parts: (A) 
Implementing the tree-based or ordered map [20 points], (B) 
Implementing the hash-table based or unordered map [40 points], 
(C) Comparing the performance of ordered and unordered map [20 
points], (D) Reviewing the code quality of the assigned codebase [10 
points], and (E) Getting an approval from the author of the assigned 
codebase [10 points]. 
      For this project, students were randomly assigned AVL Tree 
codebases (Project 1) of another student. They were asked to extend 
the assigned codebase to implement another data structure called an 
ordered map (Project 2a), an abstraction over a self-balancing binary 
tree. Students were expected to read and comprehend the peer code 
and create an abstraction over the peer’s AVL Tree. They were 
encouraged to reach out to the author in case they had a question 
but were required to reuse the peer’s code. To ensure a student built 
on top of the assigned codebase, 10 points were allocated for the 
author’s approval (Part D). The assignee who extended the codebase 
was asked to reach out to the author, who independently filled out a 
Google form to verify reuse. The students were not informed 

beforehand (during Project 1) that they will be randomly assigned 
Project 1 peer codebases for Project 2. This was deliberate as we 
wanted students to write code more naturally in Project 1. 
      During the assignment of random codebases of Project 1, some 
students did not pass all tests in our test suite. To ensure students 
could work on codebases that were functional, we assigned 
codebases that passed at least 80% tests. In professional settings, 
developers may be asked to work on messy and unfamiliar 
codebases and we deliberately wanted to introduce this randomness 
which improves external validity [11]. 80% of the 206 students were 
assigned random codebases (n=164) while 42 students were assigned 
a codebase that was volunteered by a student for use in place of 
projects that didn’t meet the 80% pass rate. We did not provide an 
editorial solution codebase to ensure students have an authentic 
experience of navigating a codebase written by a student rather than 
the course staff. For the 42 students who were assigned the 
voluntary codebase, the course staff acted as an author for code 
extension approval.  
      In the second half of this project (Project 2b), students 
individually implemented an Unordered Map and compared this 
implementation with their extended implementation of an Ordered 
Map (Project 2a). This codebase (2b) can give us insight into 
students’ code quality after they had worked on the assigned 
codebase. On average, 206 students wrote 452 lines of code (Min = 
114, Max = 1502, SD = 179) in Project 2b and the Project 2 grade 
average was 91.9 (Min = 0, Max = 100, SD = 15.0).  
      We used the Instructure’s Canvas Learning Management System 
[20] to organize the projects and the random assignment peer 
review feature to assign codebases. The codebases that did not pass 
the threshold tests were manually reassigned. In addition, we used 
Google forms to gather feedback on Part D - Reviewing the code 
quality of your peer and Part E - Getting approval from your peer on 
the usage of their codebase [21].  
 

4   METHODS FOR EVALUATION 

4.1  Study Design 
The purpose of our study was to gather preliminary feedback from 
the students on Build Programming and develop potential 
hypotheses from a qualitative analysis that can be subsequently 
assessed using experiments or quasi-experiments. To achieve this 
purpose, we designed a mixed methods study that followed a pre-
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post design [39] in the context of a large undergraduate DSA course 
in Fall 2021. A pre-post design is a form of pre-experimental design 
and does not have a control group. This design can aid researchers 
in discerning whether a phenomenon is worthy of potential 
investigation with fewer overheads before running a formal 
experiment [31]. We aim to answer the following research questions 
through our study: 
 

RQ.1. What are the student perceptions of the affordances of Build 
Programming instructional strategy? How did they receive the 
activity? 
 

RQ.2. How effective is the Build Programming instructional strategy 
in improving a student’s code quality as measured through 
readability metrics such as comment ratio, average line lengths, and 
average identifiers per line? 
 

     To understand student perceptions of the affordances of Build 
Programming (RQ.1), we used qualitative responses from student 
reflections in a post-survey. Based on this analysis, we came up with 
RQ.2 as students stated that our activity helped them in recognizing 
the importance of code quality. To evaluate if our strategy 
influenced students’ code quality and answer RQ.2, we took a 
quantitative approach and analyzed students’ source code before 
and after exposure to Build Programming (see Figure 1).  

4.2  Participants and Study Context 
Our study population is undergraduate students enrolled in a 
computing program. Our sample is drawn from students enrolled in 
an undergraduate DSA class at a public university in the US. The 
DSA course is a required course for CS and Computer Engineering 
majors and follows the CS1, CS2, and Discrete Mathematics courses 
in our program. The language of instruction is C++. 387 students 
completed the course in Fall 2021 of which 224 students consented 
to share their data for research in an IRB-approved survey (Response 
rate: 58%). There was no incentive offered to gain students’ consent 
and students voluntarily completed this survey. 206 of the 224 
students completed both projects and hence we discarded 18 
students with missing data. Therefore, our final corpus consists of 
codebases and survey data from 206 students. 

4.3  Data collection and analysis 
To understand student perceptions of the affordances and reception 
of Build Programming (RQ.1), we use student responses from two 
open-ended questions that were a part of a post-survey: (1) What did 
you learn from this activity?, and (2) Should this project be continued 
in the future? Any other comments? These responses were analyzed 
using inductive content analysis and open coding following a 
constant comparison technique[41].  
     To evaluate if the strategy influenced the student’s code quality 
and answer RQ.2, we followed a quantitative approach to analyzing 
source code before (Project 1) and after (Project 2b) the Build 
Programming intervention (Project 2a). Our independent variable is 
a repeated measures variable which is time (i.e., before and after the 
build programming intervention). Our dependent variable includes 
three code readability metrics: comment ratio (of block as well as 
single line comments), average line length, and average number of 
identifiers per line. These metrics were selected based on: (1) their 

high correlation to the human notion of readability as described in 
prior work from Buse and Weimer [3] and (2) their usage in prior 
CER literature (see Section 2). 
 

 
 

Figure 2: Examples of code quality metrics 
 

      In these readability metrics, the comment ratio of block comments 
denotes the number of comments spread over multiple lines divided 
by the total lines of code whereas the comment ratio of single-lined 
comments denotes the number of comments spanned over one line 
divided by the total lines of code. Average line length is defined as the 
average number of characters in a line (see Figure 2). Finally, 
identifiers are any names used to describe a variable, function, class, 
module, or user-defined entities. Based on Buse and Weimer [3], the 
metrics that are positively correlated with readability include the 
average number of block comments and average lines of single-lined 
comments. The average line length and the average number of 
identifiers per line are negatively correlated with readability. This 
implies that shorter source code line lengths may suggest a more 
readable program or having more comments may improve 
readability. Similarly, long chains of objects and sub-properties 
should be avoided as they negatively impact code readability [38].  
      To compute each readability metric, a parser script was written 
in Python 3.8, which imported clang.cindex [9], a python binding of 
clang library that parsed C++ source code into tokens. Using this 
script [21], tokens labeled as identifiers and comments were 
extracted and counted for each of the source files and a csv file was 
generated that consisted of anonymous student ids along with 
readability metrics for both projects. 
     To compare differences in code quality across our population, we 
used a paired samples t-test for normally distributed data and a non-
parametric equivalent when the assumptions of normality were not 
met. A Shapiro-Wilk test was used to check for normality, and we 
found that only the average number of identifiers per line data was 
normally distributed. Thus, we used a paired sample t-test to test the 
following null hypothesis: There is no difference between the mean 
paired average number of identifiers per line before and after the build 
programming intervention in the source code of our population of 
undergraduate computing students. A p-value of less than 0.05 was 
used to reject our null hypotheses. For the other dependent 
variables: comment ratio and average line length the assumptions of 
normality were not met. Therefore, we used a Wilcoxon signed rank 
test which is used to test the following null hypothesis: There is no 
difference in the median paired code quality metrics (e.g., comment 
ratio) before and after the build programming intervention in the 
source code of our population of undergraduate computing students. 
The alternative hypothesis assumes that the difference in the median 
is greater than 0 for paired code quality metrics. The tests were 
conducted using scipy.stats library in python. 
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5   FINDINGS 

5.1  Affordances of Build Programming 
We asked students in the post-survey what they learned from our 
project which used Build programming. We inductively coded these 
104 open-ended responses using five unique codes.  
 

Promoting and scaffolding code reading: Unsurprisingly, most 
students (40%, n=42) described that Build programming promoted 
and scaffolded code reading and extension which was our original 
intention behind the intervention. For instance, S7 described that 
they “learned how to navigate another person's code and what aspects 
of the code to look at first in order to understand the structure of the 
code”. Students also described that our technique scaffolded code 
reading because of familiar context. For example, S214 stated that 
“the part on working with someone else's code is simple enough that the 
focus is entirely on understanding the code without the stress of 
figuring out the implementation, which I think is a really good way to 
introduce it”.  
 

Learning computing concepts: 32% of 104 students (n=33) stated 
that reading the codebase provided them an opportunity to learn 
various computing concepts such as wrapper classes, pass by 
reference, helper functions, traversals, command arguments, 
pointers, memory management, and organization of files. For 
instance, S88 stated, “I learned that you could do post/pre/in order 
traversals with stacks. This is much more efficient than the way I 
employed”. Along similar lines, S107 stated that, “the peer code 
provided to me [for the assignment] taught me a lot of new concepts 
that I had not touched on, such as shared pointers”. 
 

Importance of code quality: 25% of the 104 students (n=26) 
suggested that Build Programming supported them in recognizing 
the importance of code quality metrics such as appropriate 
whitespace and comments, and consistent code style. S123 reported 
that “I learned that I should make my code more readable in case 
others need to review my work or continue from where I started. I take 
a lot of shortcuts to cut out code and it might be confusing with how 
little I comment”. Another student, S125 described that “I learned that 
documenting your code is extremely useful to better understand it and 
work with it faster. In addition, I learned that documenting your code is 
really important so that others can understand it to be able to work 
with it”. Not only did the students realize the importance of writing 
readable code, but they also suggested that they will alter their 
behavior by writing more readable code. For example, S125 
continued that in the future, “I will document and add more 
comments everywhere as if I am explaining it to another person. I will 
add lines of comments in between my functions for better readability”. 
To investigate this behavioral change, we undertook a source code 
analysis to determine changes in code quality (Section 5.3).  
 

Alternate ways to solve a problem:  A few students (9%, n=9) 
described that the project involving Build Programming exposed 
them to alternative ways of solving a problem, new ideas, and made 
them reflect on what they could have done differently. For instance, 
S216 stated, “It was a good learning experience since I learned about a 
different approach/style of coding than mine”. Another student, S104, 
mentioned, “I got to see another way of going about the code that I had 

already done. It was kind of interesting comparing her code to mine, 
and seeing how I had it more optimized in places and vise versa”.  
 

Authentic assessment: Finally, five students (5%) described our 
assessment as authentic and comparable to what they might 
encounter in the industry. For example, S153 stated, “I learned what 
it will be like in the real industry. I am only used to working on my 
own coding projects in which I know and am familiar with.  A lot of 
my time in the future will be spent reading code to understand its 
functionality rather than just writing it”.  

5.2  Student reception 
We asked students in our survey if we should continue the project 
with Build Programming in the future. 119 student responses to this 
question were coded into three categories based on valence 
(affective tone): Positive, Positive with changes, and Negative. In total, 
91% of the 119 student responses suggested that we should continue 
the activity as-is or with the logistical change of assigning working 
codebases (RQ1). 
     72.3% of the 119 student responses (n=86) were coded as positive 
and students enthusiastically responded that the project should 
continue as-is or with minor modifications. For instance, S1 stated, “I 
think so. A lot of my friends from industry in CS (FAANG., AMEX, 
BOA) have told me its good practice to learn how to use different 
codebases to adapt to your own solution. A lot of code is already 
written, sometimes its up to you to understand it, identify problems, 
and fix it”. 18.5% of responses (n=22) were coded as positive with 
changes and these students suggested that the project should be 
continued only after making a change. This change pertained to the 
assignment of codebases that were either written by the course staff 
or a working codebase from another student. For instance, S49 
stated, “I believe the project should absolutely be continued in the 
future. Writing data structures from a small bit of skeleton code is very 
good practice. […] A critical point though, I do not believe it is a good 
idea to randomly assign codebases to people. It is a waste of time to be 
assigned codebases that do not function correctly […]. The instruction 
team may wish to take a few known-to-be-functional codebases […] 
and only pull from that pool in the future”. Finally, 9.2% of responses 
were categorized into negative valence (n=11) as students suggested 
that the project should be discontinued due to an unfavorable 
experience. An example response in this category was S38’s 
response who suggested “I do not believe this project should be 
continued in the future. It is too dependent on the competence of 
others”. These 9.2% of students share the same general sentiment as 
the 18.5% who were also frustrated with working with someone 
else’s code that did not work. This suggests that if codebases are 
curated for 100% test passing or additional time is given to students 
to fix their failing tests, this assignment is one that is viable for all 
students. 

5.3  Code Quality Analysis 
We conducted a source code analysis to determine the efficacy of 
Build Programming on improving students’ code quality. Comment 
ratio for single line comments decreased significantly before 
(Median=0.09, Mean(µ)=0.105, SD(σ)=0.06) and after (Median=0.07, 
µ=0.08, σ=0.06) Build Programming (Z=4.99, N=206, p<0.001). 
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Although we expected that our strategy would increase the comment 
ratio as more students might be influenced to write comments, our 
results were in the opposite direction as students wrote fewer 
comments (24%↓) after our intervention. This difference could be 
attributed to the grading rubric of Project 1 which allocated one 
point for writing comments while the project after Build 
Programming had no explicit points for writing comments. Since we 
designed our intervention for promoting code reading and not for 
gauging code quality initially, the two projects did not have similar 
rubrics and grades might have motivated students to write more 
comments.  
 

 

 
 

Figure 3: Box plots of code quality metrics 
 

      In addition, comment ratio for block line comments was 
significantly different (Z=8.08, N=206, p<0.001) before (Median =0, 
µ=0.002, σ=0.006) and after Build Programming (Median= 0.003, 
µ=0.003, σ=0.003). For block comments, however, the results were in 
the expected direction as students wrote more block comments on 
average after the intervention. But students wrote fewer block 
comments than single-line comments (23x of the total block 
comments on average). The other metrics of code quality: average 
line length and the average number of identifiers per line were not 
explicitly stated in the rubrics of our projects and hence might be 
more accurate metrics for gauging code quality differences. Students 
wrote shorter lines of code (7%↓) after Build Programming. The 
difference between average line length before (Median=20.7, µ=21.2, 
σ=4.3) and after (Median=19.4, µ=19.7, σ=2.9) our activity was 
significant (Z=5.16, N=206, p<0.001). Finally, for the last metric, the 
average number of identifiers per line, the data followed the normal 
distribution, and we used a paired two-tailed t-test to test our 
hypothesis. Students wrote less number of identifiers per line on 
average (12.5%↓), which indicates better code quality after our 
intervention, and the results indicate a significant difference 
between the average number of identifiers per line before (µ=1.6, 
σ=0.3) and after (µ=1.4, σ=0.2) our activity (t(205)=11.2, p<0.001).  
 

6    DISCUSSION AND CONCLUSION  
We initially designed the Build Programming intervention to scaffold 
students’ code reading by providing them with an opportunity to 
work with unfamiliar codebases albeit in a familiar context. Through 
our qualitative analysis, we found that our intervention not only 
promoted code reading, but also increased students’ exposure to 
alternate ways to implement solutions to DSA problems, enhanced 
their knowledge of computing constructs, and increased their 
awareness of the importance of code quality through an authentic 
experiential (“show”) learning approach rather than a “tell” 
approach. A significant majority of students (91%) expressed that we 
should continue Build Programming as-is or with minor 
modifications. Students recommended that they should be provided 
with fully functional codebases as they were frustrated to work with 
codebases that had bugs. Since we assigned codebases that passed 
80% or more tests, 91% of the 206 students (n=188) were assigned 
codebases that were not completely correct which led to an 
unpleasant experience for some students. Instructors can resolve this 
problem in the future by handpicking selected working codebases 
for random assignment and then approving the codebase reuse on 
their end. In our future work, we plan to incorporate Build 
Programming in more courses as well as other projects as well as 
run carefully designed experiments to test the efficacy of Build 
Programming on scaffolding code reading and improving code 
quality. We recommend other instructors to incorporate Build 
Programming in their courses given the importance of learning how 
to read and extend codebases.     
 

7    LIMITATIONS  
Our analysis assumes that students’ code style would remain the 
same across projects and we are comparing the code quality before 
and after the intervention. Hence, our study might be subject to 
maturation and testing effects as the students might improve their 
quality of code over the semester while being tested on two different 
projects. To prevent these effects, counterbalancing cannot be used 
due to the nature of the intervention, but a better experimental 
design would include a control group that coded the Ordered map 
and Unordered map without Build Programming, followed by a 
comparison of code quality metrics. Another limitation that impacts 
our analysis is the lack of consistent rubrics across two projects. A 
more careful experiment would use a similar rubric. Lastly, data 
coded using qualitative analysis is subject to interpretation biases 
[11]. We supplement our codes with representative quotes to 
increase validity and we are transparent about our coding process. 
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